Light, nutrients, and food-chain length constrain planktonic energy transfer efficiency across multiple trophic levels.
نویسندگان
چکیده
The efficiency of energy transfer through food chains [food chain efficiency (FCE)] is an important ecosystem function. It has been hypothesized that FCE across multiple trophic levels is constrained by the efficiency at which herbivores use plant energy, which depends on plant nutritional quality. Furthermore, the number of trophic levels may also constrain FCE, because herbivores are less efficient in using plant production when they are constrained by carnivores. These hypotheses have not been tested experimentally in food chains with 3 or more trophic levels. In a field experiment manipulating light, nutrients, and food-chain length, we show that FCE is constrained by algal food quality and food-chain length. FCE across 3 trophic levels (phytoplankton to carnivorous fish) was highest under low light and high nutrients, where algal quality was best as indicated by taxonomic composition and nutrient stoichiometry. In 3-level systems, FCE was constrained by the efficiency at which both herbivores and carnivores converted food into production; a strong nutrient effect on carnivore efficiency suggests a carryover effect of algal quality across 3 trophic levels. Energy transfer efficiency from algae to herbivores was also higher in 2-level systems (without carnivores) than in 3-level systems. Our results support the hypothesis that FCE is strongly constrained by light, nutrients, and food-chain length and suggest that carryover effects across multiple trophic levels are important. Because many environmental perturbations affect light, nutrients, and food-chain length, and many ecological services are mediated by FCE, it will be important to apply these findings to various ecosystem types.
منابع مشابه
Flood disturbance, algal productivity, and interannual variation in food chain length
The length of a river food chain changed from year to year, shifting with the hydrologic regime. During drought years, grazers suppressed algae across a nutrient gradient, while predators were functionally unimportant. Following flood disturbance, predators suppressed grazers, releasing algae. These results suggest that hydrologic regime, rather than productivity, determines the functional leng...
متن کاملMercury Biomagnification between Two Trophic Levels of a Grazing Food Chain (Plankton and Planktivorous Fish) in a Fresh Water Ecosystem
Background: The Present study was carried out to track and calculate Biomagnification Factor (BMF) of total mercury (T-Hg) between two different trophic levels (i.e., plankton and a planktivorous fish) in a fresh water grazing food chain. Methods: Experimental organisms were planktonic biomass and silver carp (Hypophthalmichthys molitrix) as a planktivorous fish. Silver carp samples were obt...
متن کاملLonger Food Chains in Pelagic Ecosystems: Trophic Energetics of Animal Body Size and Metabolic Efficiency.
Factors constraining the structure of food webs can be investigated by comparing classes of ecosystems. We find that pelagic ecosystems, those based on one-celled primary producers, have longer food chains than terrestrial ecosystems. Yet pelagic ecosystems have lower primary productivity, contrary to the hypothesis that greater energy flows permit higher trophic levels. We hypothesize that lon...
متن کاملTrophic assimilation efficiency markedly increases at higher trophic levels in four-level host-parasitoid food chain.
Trophic assimilation efficiency (conversion of resource biomass into consumer biomass) is thought to be a limiting factor for food chain length in natural communities. In host-parasitoid systems, which account for the majority of terrestrial consumer interactions, a high trophic assimilation efficiency may be expected at higher trophic levels because of the close match of resource composition o...
متن کاملDrivers of nitrogen transfer in stream food webs across continents.
Studies of trophic-level material and energy transfers are central to ecology. The use of isotopic tracers has now made it possible to measure trophic transfer efficiencies of important nutrients and to better understand how these materials move through food webs. We analyzed data from thirteen 15 N-ammonium tracer addition experiments to quantify N transfer from basal resources to animals in h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 105 47 شماره
صفحات -
تاریخ انتشار 2008